
DataCell: Building a Data Stream Engine on top of a
Relational Database Kernel

Erietta Liarou
(supervised by Martin Kersten)

CWI Amsterdam, The Netherlands
erietta@cwi.nl

ABSTRACT
Stream applications gained significant popularity in recent
years, which lead to the development of specialized datas-
tream engines. They often have been designed from scratch
and are tuned towards the specific requirements posed by
their initial target applications, e.g., network monitoring
and financial services. However, this also meant that they
lack the power and sophisticated techniques of a full fledged
database system accumulated over many years of database
research.

In this PhD work, we take the opposite route and design
a stream engine, the DataCell, directly on top of a mod-
ern database kernel. To achieve this objective, we isolated
the necessary and sufficient mechanism to support continu-
ous query processing in a relational database environment.
This led to a lightweight and orthogonal extension of SQL
with a direct hook into the sophisticated algorithms and
techniques of the DBMS. The streaming application can use
any kind of complex query functionality without the need
for us to reinvent a complete software stack, i.e., language
parsers, optimizers, and storage structures. In this paper,
we charter the roadmap of this thesis, the opportunities and
challenges that arise with such a direction, and the signifi-
cant advantages already achieved.

1. INTRODUCTION
Data Stream Management Systems (DSMSs) have become

an active research area in the database community. The mo-
tivation comes from a potentially large application domain,
e.g., network monitoring, sensor networks, telecommunica-
tions, financial, web applications, etc.

In a stream application, we need mechanisms to support
long-standing/continuous queries over data that is contin-
uously updated from the environment. This requirement
is significantly different than what happens in a relational
DBMS where data is stored in static tables and then users
fire one-time queries to be evaluated once over the exist-
ing data. Furthermore, a stream scenario brings a number
of unique query processing challenges. For example, in or-
der to achieve continuously high performance, the system

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

needs to cope with (and exploit) similarities between the
many standing queries, adapt to the continuously changing
environment and so on.

Given these differences, and the unique characteristics and
needs of continuous query processing, the pioneering DSMS
architects naturally considered that the existing DBMS ar-
chitectures are inadequate to achieve the desired perfor-
mance. Another aspect is that the initial stream applica-
tions had quite simple requirements in terms of query pro-
cessing. This made the existing DBMS systems look over-
loaded with functionalities. These factors led researchers to
design and build new architectures from scratch and several
DSMS solutions have been proposed over the last years giv-
ing birth to very interesting ideas and system architectures,
e.g., [4, 6, 7, 8, 10, 13].

However, there is drawback with this direction. By de-
signing completely different architectures from scratch, very
little of the existing knowledge and techniques of relational
databases can be exploited. This became more clear as the
stream applications demanded more functionality. In this
work, we start at the other end of the spectrum. We study
the direction of building an efficient data stream manage-
ment system on top of an extensible database kernel. With
a careful design, this allows us to directly reuse all sophisti-
cated algorithms and techniques of traditional DBMSs. We
can provide support for any kind of complex functional-
ity without having to reinvent solutions and algorithms for
problems and cases with a rich database literature. Further-
more, it allows for more flexible and efficient query process-
ing by allowing batch processing of stream tuples as well as
out-of-order processing by selectively picking the tuples to
process using basket expressions.

The main idea is that when stream tuples arrive into the
system, they are immediately stored in (appended to) a new
kind of tables, called baskets. By collecting tuples into bas-
kets, we can evaluate the continuous queries over the bas-
kets as if they were normal one-time queries and thus we
can reuse any kind of algorithm and optimization designed
for a modern DBMS. Once a tuple has been seen by all rel-
evant queries/operators, it is dropped from its basket. The
above description is naturally an oversimplified one as this
direction allows the exploration of quite flexible strategies.
For example, throwing the same tuple into multiple differ-
ent baskets where multiple queries are waiting, split query
plans into multiple parts and share baskets between sim-
ilar operators (or groups of operators) of different queries
allowing reuse of results and so on. The query processing
scheme follows the Petri-net model [22], i.e., each compo-



nent/process/sub query plan is triggered only if it has input
to process while its output is the input for other processes.

Building a stream system on top of a modern relational
database engine, offers freely access to the low level technol-
ogy but also arises a plethora of new issues that have nor-
mally never required attention before by a standard database
application scenario. First of all, how can we support the
continual nature of a query? How can we organize and
schedule multiple continuous queries taking also into ac-
count different query priorities, low-latency processing and
possible load shedding requirements, based on the dynamic
environment changes? How can we integrate queries that
just arrived with existing ones? Also, how will we efficiently
support window query processing, a model that is mainly
invented to make feasible the infinite streaming behaviour?
Our contribution is the awareness that this research direc-
tion is feasible and that it can bring significant advantages.

The paper presents a complete architecture, the DataCell,
in the context of the currently emerging column-stores. We
discuss our design and implementation of the DataCell on
top of MonetDB, an open-source column-oriented DBMS.
It is realized as an extension to the MonetDB/SQL infras-
tructure and supports the complete SQL’03 allowing stream
applications to support sophisticated query semantics.

The remainder of the paper is organized as follows. In
Section 2, we present a detailed introduction of the Data-
Cell architecture at large followed by some interesting open
research directions in Section 3. Then, in Section 4, we dis-
cuss related work and Section 5 concludes the paper.

2. THE DATACELL ARCHITECTURE
In this section, we discuss the DataCell architecture. We

build the DataCell on top of MonetDB [21], an open-source
column-oriented DBMS.

Let us first give a brief description of our underlying database
kernel. MonetDB is a full fledged column-store engine. Ev-
ery relational table is represented as a collection of Binary
Association Tables (BATs). Each BAT is a set of two columns,
called head and tail. For a relation R of k attributes, there
exist k BATs, each BAT storing the respective attribute as
(key,attr) pairs. The system-generated key identifies the
relational tuple that attribute value attr belongs to, i.e., all
attribute values of a single tuple are assigned the same key.
Key values form a dense ascending sequence representing the
position of an attribute value in the column. Thus, for base
BATs, the key column typically is a virtual non-materialized
column. For each relational tuple t of R, all attributes of t
are stored in the same position in their respective column
representations. The position is determined by the inser-
tion order of the tuples. This tuple-order alignment across
all base columns allows the column-oriented system to per-
form tuple reconstructions efficiently in the presence of tuple
order-preserving operators. The system is designed as a vir-
tual machine architecture with an assembly language, called
MAL. Each MAL operator wraps a highly optimized rela-
tional primitive. The interested reader can find more details
on MonetDB in [21].

The DataCell is positioned between the SQL-to-MAL com-
piler and the MonetDB kernel. In particular, the SQL run-
time has been extended to manage the stream input using
the columns provided by the kernel, while a scheduler con-
trols activation of the continuous queries. The SQL com-
piler is extended with a few orthogonal language constructs

Query

Receptor

Emitter

Table

Basket

R B1 Q B2 E

T

Figure 1: The DataCell model

to recognize and process continuous queries.
In the remainder of the section, we step by step build up

the architecture and the possible research directions. Our
architecture consists of the following components: recep-
tors, emitters, baskets and factories. The novelty is the in-
troduction of baskets and factories in the relational engine
paradigm. Baskets and factories can, for simplicity, initially
be thought as tables and continuous queries, respectively.

There is a large research landscape on how baskets and
factories can interact within the DataCell kernel to provide
efficient stream processing. In the rest of this section, we
describe in detail the various components and their basic
way of interaction.

2.1 Receptors and Emitters
The periphery of a stream engine is formed by adapters,

e.g., software components to interact with devices, RSS feeds
and SOAP web-services. The communication protocols range
from simple messages to complex XML documents trans-
ported using either UDP or TCP/IP. The adapters for the
DataCell consist of receptors and emitters.

A receptor is a separate thread that continuously picks up
incoming events from a communication channel. It validates
their structure and forwards their content to the DataCell
kernel for processing. There can be multiple receptors, each
one listening to a different communication channel/stream.

Likewise, an emitter is a separate thread that picks up
events prepared by the DataCell kernel and delivers them to
interested clients, i.e., those that have subscribed to a query
result. There can be multiple emitters each one responsible
for delivering a different result to one or multiple clients.

Figure 1 demonstrates a simple interaction model between
the DataCell components where a receptor and an emitter
can be seen at the edges of the system listening to streams
and delivering results, respectively. The interchange format
between the various components is purposely kept simple
using a textual interface for exchanging flat relational tuples.

2.2 Baskets
The basket is the key data structure of the DataCell. Its

role is to hold a portion of a stream, represented as a tempo-
rary main-memory table. Every incoming tuple, received by
a receptor, is immediately placed in (appended to) at least
one basket and waits to be processed.

Once data is collected in baskets, we can evaluate the rel-
evant continuous queries on top of these baskets. This way,
instead of throwing each incoming tuple against its relevant
queries, the DataCell does exactly the opposite by first col-
lecting the data and then throwing the queries against the
data. This processing model resembles the typical DBMS
scenario and thus we can exploit existing algorithms and
functionality of advanced DBMSs. Later in this section we



discuss in more detail the interaction between queries and
baskets.

The commonalities between baskets and relational tables
allow us to avoid a complete redesign from scratch. There-
fore, the syntax and semantics of baskets is aligned with the
table definition in SQL’03 as much as possible. A prime
difference is the retention period of their content and the
transaction semantics. A tuple is removed from a basket
when “consumed” by all relevant continuous queries. This
way, the baskets initiate the data flow in the stream engine.

Another important opportunity, with baskets as the cen-
tral concept, is that we purposely step away from the de-
facto approach to process events in arrival order, only. Un-
like other systems there is no a priori order; a basket is
simply a (multi-) set of events received from a receptor. We
consider arrival order a semantic issue, which may be easy
to implement on streams directly, but also raises problems,
e.g., with out-of-sequence arrivals [1], regulation of concur-
rent writes on the same stream, etc. It unnecessarily compli-
cates applications that do not depend on arrival order. On
the other hand, baskets in DataCell provide maximum flex-
ibility to perform both in-order and out-of-order processing
by allowing the system to process groups of tuples at a time.

Realizing the DataCell approach on top of a column-ori-
ented architecture allows for even more flexibility. A basket
b in MonetDB becomes a BAT (column) holding values for
a single attribute A of an incoming stream. Each entry in
b holds a value of A along with a key that identifies the re-
lational tuple in which this attribute value belongs to. For
each relational table there exists an extra column, the times-
tamp column, that for each tuple it reflects the time that
this tuple entered the system. This way, we can exploit all
column-store benefits during query processing, i.e., a query
needs to read and process only the attributes required and
not all attributes of a table.

2.3 Factories
The continuous queries are cast into MonetDB’s factory

concept, i.e., a powerful co-routine method provided by the
relational algebra engine. In DataCell, a factory contains
the compiled continuous query plan. It has at least one in-
put and one output basket from which it continuously reads
data, processes it and creates a result to be placed in the
output baskets. This process is a bulk operation, all tuples
consumed are removed from their input baskets.

Having introduced the DataCell components, we can con-
sider them at a higher level using Figure 1 as an example. A
receptor captures incoming tuples and places them in Bas-
ket B1. Then, a factory, containing the full query plan of
a continuous query, processes the data in B1 and places all
qualifying tuples in Basket B2 where the emitter can finally
collect the result and deliver it to the client.

At any point in time, multiple receptors wait for incom-
ing tuples and place them into the proper baskets. A sched-
uler handles multiple factories that read these input baskets
and place results into multiple output baskets where multi-
ple emitters feed the interested clients with results. It is a
multi-threaded architecture. Every single component is an
independent thread and data streams through the threads
connected by baskets.

Let us now describe factories in more detail. A factory is
a function containing a set of MAL operators corresponding
to the query plan of a given continuous query. A factory is

Algorithm 1 The factory for a simple query that selects all
values of attribute X in a range v1-v2.

1: input = basket.bind(X);
2: output = basket.bind(Y);
3: while true do
4: basket.lock(input);
5: basket.lock(output);
6: result = monetdb.select(input,v1,v2);
7: basket.empty(input);
8: basket.append(output,result);
9: basket.unlock(input);

10: basket.unlock(output);
11: suspend();
12: end while

specified as an ordinary function. The difference is that its
execution state is saved between calls. The first time that
the factory is called, a thread is created in the local system
to handle subsequent requests. A factory is called by the
scheduler (to be discussed below). Its status is being kept
around and the next time it is called it continues from the
point where it stopped before. In Algorithm 1, we give an
example of a factory for a simple query using the original
MonetDB commands. The infinite loop is suspended to let
the scheduler control its processing.

Careful management of the baskets ensures that one fac-
tory, receptor or emitter at a time updates a given basket.
This way, as seen in Algorithm 1, the loop of the factory
begins by acquiring locks on the relevant input and output
baskets. The locks are released only at the end of the loop
just before the factory is suspended. Both input and output
baskets need to be locked exclusively as they are both up-
dated, i.e., (a) the factory removes all seen tuples from the
input baskets so that it does not process them again in the
future to avoid duplicate notifications and (b) it adds result
tuples to the output baskets.

2.4 Processing Model
The DataCell architecture uses the abstraction of the Petri-

net model [22] to facilitate continuous query processing. A
Petri-net is a mathematical representation of discrete dis-
tributed systems. It uses a directed bipartite graph of places
and transitions with annotations to graphically represent
the structure of a distributed system. Places may contain
(a) tokens to represent information and (b) transitions to
model computational behavior. Edges from places to tran-
sitions model input relationships and, conversely, edges from
transitions to places denote output relationships. A transi-
tion fires if there are tokens in all its input places. Once fired,
the transition consumes the tokens from its input places,
performs some processing task, and places result tokens in
its output places. An advantage of the Petri-net model is
that it provides a clean definition of the computational state.

In the DataCell world now, baskets are equivalent to Petri-
net token place-holders while receptors, emitters and facto-
ries represent Petri-net transitions. Following the Petri-net
model, each transition has at least one input and at least
one output. Each receptor has as input the stream it listens
to and as output one or more baskets where it places incom-
ing tuples. Each factory has as input one or more baskets
from where it reads its input data. These baskets may be
the output of one or more receptors or the output of one or
more different factories. The output of a factory is again one
or more baskets where the factory places its result tuples.
Each emitter has as input one or more baskets that repre-



sent output baskets of one or more factories. The output of
the emitter is the delivery of the result tuples to the clients
representing the final state of the query processing chain.

The firing condition that triggers a transition (receptor,
emitter or factory) to execute is the existence of input, i.e.,
at least one tuple exists in b, where b is the input basket
of the transition. After an input tuple has been seen by
all relevant transitions, it is subsequently dropped from the
basket so that it is not processed again.

The DataCell kernel contains a scheduler to organize the
execution of the various transitions. The scheduler runs an
infinite loop and at every iteration it checks which of the
existing transitions can be processed by analyzing their in-
puts. The scheduler continuously re-evaluates the input of
all transitions. In order to accommodate more flexible pro-
cessing schemes, the system may explicitly require a basket
to have a minimum of n tuples before the relevant factory
may run. When a transition has multiple inputs, then all
inputs must have tuples for the transition to run. In cer-
tain cases, to guarantee correctness and avoid unnecessary
processing costs, auxiliary input/output baskets are used to
regulate when a transition runs.

2.5 Processing Strategies
The way factories and baskets interact within the Data-

Cell kernel defines the query processing scheme. By choosing
different ways of interaction, we can make the query process-
ing procedure more efficient and more flexible. The current
DataCell prototype implements a number of alternatives.

Our first strategy, called separate baskets, provides the
maximum independence to each query and stream. Each
query becomes a single factory and has its own input/output
baskets meaning that each query can be processed indepen-
dently at the expense of copying the same input to the basket
of each relevant query.

Our second strategy, called shared baskets, makes a first
step towards exploiting query similarities. The motivation
is to avoid the initial copying of the first strategy by sharing
baskets between factories. Each attribute from the stream
is placed in a single basket b and all factories interested in
this attribute have b as an input basket.

Naturally, sharing baskets minimizes the overhead of repli-
cating the stream in the proper baskets. In order to guaran-
tee correct and complete results, the next step is to regulate
the way the factories access their input baskets such that a
tuple remains in its basket until all relevant factories have
seen it. Thus, this strategy steps away from the decision
of forcing each single factory to remove the tuples it reads
from an input basket after execution based on the basket
expression of the respective query.

The shared baskets strategy removes the tuples from a
shared input basket only once all relevant factories have seen
it. The next strategy is motivated by the fact that not all
queries on the same input are interested in the same part
of this input. For example, two queries q1 and q2 might be
interested in disjoint ranges of the same attribute. Assume
q1 runs first. Given that the queries require disjoint ranges,
all tuples that qualified for q1 are for sure not needed for
q2. This knowledge brings the following opportunity; q1

can remove from b all the tuples that qualified its basket
predicate and only then allow q2 to read b. The effect is
that q2 has to process less tuples by avoiding seeing tuples
that are already known not to qualify for q2. All we need is

an extra basket between q1 and q2 so that q2 runs only after
q1. This strategy opens the road for even more advanced
ways of exploiting query commonalities.

2.6 Basket Expressions and Predicate Win-
dows

Having discussed the basic building blocks of the Data-
Cell, we now proceed with the introduction of the basket
expressions that allow us to process predicate windows on a
stream. They allow for more flexible/expressive queries by
selectively picking the tuples to process from a basket. Ev-
ery continuous query contains a basket expression. In fact,
basket expressions may be part only of continuous queries,
which allows the system to distinguish between continuous
and normal/one-time queries.

A basket expression encompasses the traditional select-
from-where-groupby SQL language framework. It is syn-
tactically a sub-query surrounded by square brackets. How-
ever, the semantics is quite different. Basket expressions
have side-effects; they change the underlying tables, i.e.,
baskets, during query evaluation. All tuples referenced in
a basket expression are removed from their underlying store
automatically. This leaves a partially emptied basket be-
hind. A basket can also be inspected outside a basket ex-
pression. Then, it behaves as any (temporary) table, i.e.,
tuples are not removed. Continuous queries q1 and q2 below
demonstrate example usages of the basket expressions.

(q1) select * from [select * from R] as S
where S.a > v1

(q2) select * from [select * from R where R.b<v2] as S
where S.a >v1

In Query q1, the basket expression requests all tuples from
the relevant stream/basket R. All tuples selected are imme-
diately removed from R, but they remain accessible through
S during the remainder of the query execution. From this
temporary table S, we select the payloads satisfying the
predicate. This query represents a typical continuous query
where all tuples are considered.

On the other hand, in Query q2 the basket expression
sets a restriction by filtering stream tuples before the actual
continuous query considers them. This restriction sets a
predicate window, i.e., the query will continuously evaluate
only the tuples that fall in the predicate window as defined
by the basket expression. This effect is similar to the SQL
window construct. However, the semantics is richer and
more flexible.

Most DSMSs perform query processing over streams seen
as a linear ordered list. This naturally leads to a sequence
of operators, such as next, follows, and window expres-
sions. The latter overloads the semantics of the SQL win-
dow construct to designate a portion of interest around each
tuple in the stream. Early DSMS designs liberally extended
the SQL window function to capture part of a stream, e.g.,
a window can be defined as a fixed sized stream fragment, a
time-bounded stream fragment, or a value-bounded stream
fragment only. However, in SQL’03 window semantics have
been made explicit and overloading it for stream processing
introduces several problems, e.g., windows are limited to ex-
pressions that aggregate only, they carry specific first/last
window behavior, they are read-only queries, they rely on
predicate evaluation strictly before or after the window is
fixed, etc.



The basket expressions provide a more elegant and richer
ground to designate windows of interest. They can be lim-
ited in size using result set constraints, they can be explicitly
defined by predicates over their content, and they can be
based on predicates referring to objects in enclosing query
blocks or elsewhere in the database. Their syntax and se-
mantics seamlessly fit in an existing SQL software stack.
Details of the DataCell language are presented in [17].

3. THESIS OUTLINE
Having discussed the basic architecture of DataCell and

the minimum additional building blocks necessary, let us
now briefly describe some of the interesting research direc-
tions that arise.

One of the major issues is how to support window-based
processing in DataCell. Window queries were invented to
make possible the evaluation of continuous queries over un-
bounded streaming data, especially in the presence of block-
ing operators. The pure database technology does not in-
clude special window-based operators or any kind of opti-
mized algorithms for this kind of queries. Following the
DataCell approach, our goal is not to rebuild a new special
class of windowed operators. Instead, we study a scheme
that achieves window processing based on careful high level
scheduling and dynamic query plan rewriting.

A second interesting issue is that of multi-query process-
ing and the rich scheduling opportunities that control the
interaction between the multiple waiting queries. Exploit-
ing similarities at the query and data level is necessary in
order to meet the real time deadlines a stream application
sets. The essential difference in the DataCell model, is that
we are looking for similarities at the query plan level. This
way, we need to study mechanisms to efficiently and dynam-
ically organize the queries in multiple groups based on their
needs and properties. To accommodate partially overlap-
ping queries we also need mechanisms to dynamically split
and merge factories that wrap the query plans (or parts of
them).

3.1 Windowed Query Processing
Continuous computation of long standing queries in large

scale streaming environments is a huge challenge from a data
management perspective. Continuously considering all past
data as candidates for answers to a continuous query is not
a scalable solution. Especially when it comes to blocking
operators, e.g., a join, it is unrealistic to continuously con-
sider all data, as the stream is continuously bringing more
and more data. This way, window-based queries have been
introduced to assist efficient query processing in streaming
environments. By windowing a continuous query, we delimit
the boundaries of the initially unbounded incoming data and
we continuously produce partial answers on different por-
tions of the data. As the content of the window changes
(e.g., new tuples are inserted, old tuples are expired), the
query answer is also updated in order to reflect the data
input changes.

High interest gains a special class of window queries, the
sliding window queries. There, the challenging part is that
we need to repeatedly access/process partially the same data.
This fact combined with the high memory and processing
cost requirements which are typical in a streaming environ-
ment, led the researchers to search and study alternative
evaluation techniques that minimize the access and reevalu-

ation of data that has been already processed within a given
window. Specialized algorithms have been proposed for mul-
tiple different operators, such as window joins [14, 16, 15]
and windowed aggregates, e.g., [11, 9]. The two basic high
level routes we can follow in order to handle sliding window
queries are the (a) re-evaluation and the (b) incremental
evaluation, [12]. According to the query re-evaluation ap-
proach, data is processed one full window at a time. When
a window w is complete, i.e., all the tuples that should be
in w have arrived, we process all the tuples in w in one go.
When new tuples arrive, they are appended to the window,
the window slides and older tuples expire (sliding window
case); then the evaluation of the query on the new win-
dow happens from scratch. On the other hand, with the
incremental evaluation approach, we build the answer of a
window snapshot by exploiting partial intermediate results
of previous window snapshots on the same query. The goal
is to avoid processing again the same data. Instead, we pro-
cess only what is really necessary to reflect the changes to
window, e.g., the effect of the new tuples that just arrived
and the effect of the old tuples that just expired.

The re-evaluation method absolutely fits in the context
of DataCell and can be easily supported by the concept of
the factory. However, the incremental evaluation approach
seems more promising since it avoids processing the already
known stream data, but it requires additional effort that
is not by-default integrated into the traditional underlying
database technology. The major challenge is to support ef-
ficient window based processing without building new oper-
ators.

Our initial direction follows the basic window model, in-
troduced in [25]. The basic window model is a natural way
to handle sliding windows and has been heavily exploited in
the literature. In the DataCell context though, the problem
is very different due to the inherit design to stick with the
original database operators and mainly due to the fact that
the problem is elevated at the query plan level. From a high
level point of view, with a basic window approach, a window
w is split into more than one smaller sub-windows called ba-
sic windows, bw. For each sub-window we keep a summary
that describes its content, in such a way that we do not need
to process again the same portion of data. While window
w slides, the older bw expire and we forget their summaries
while new bw are added which we process to synthesize the
new result.

In addition, the role of the scheduler is very important in
this context to trigger the evaluation of the proper factories
when there are enough tuples to fill one or more windows.
For count-based windows all we need to do is to monitor
the number of tuples in baskets. For time based windows
the scheduler needs to monitor the timestamp of incoming
stream tuples. For predicate-based windows it may become
much more complicated and it requires more extensive data
processing.

3.2 Processing Model
Here, we investigate research opportunities that arise from

the basic DataCell processing model. The most challenging
directions come from the choice to split the plan of a sin-
gle query into multiple factories. The motivation for this
comes from different angles. For example, each factory in
a group of factories sharing a basket, conceptually releases
the basket content only after it has finished its full query



plan. Assume two query plans, a lightweight query q1 and a
heavy query q2 that needs a considerable longer processing
time compared to q1. With the shared baskets strategy we
force q1 to wait for q2 to finish before we allow the receptor
to place more tuples in the shared basket so that q1 can run
again. A simple solution is to split a query plan into mul-
tiple parts, such that part of the input can be released as
soon as possible, effectively eliminating the need for a fast
query to wait for a slow one.

Another natural direction that comes to mind when we
decide to split the query plans into multiple factories is the
possibility to share both baskets and execution cost. For
example, queries requiring similar ranges in selection oper-
ators can be supported by shared factories that give output
to more than one query’s factories. Auxiliary factories can
be plugged in to cover overlapping requirements.

The above directions are targeted to provide support for
multi-query processing in DataCell. Naturally, most of these
directions fall into the responsibility of the scheduler compo-
nent of the DataCell which emerges as the most crucial com-
ponent in order to provide stream capabilities in a typical
DBMS. One of the most challenging issues with the sched-
uler is to dynamically reorganize and adapt the scheduling
policy for a query or group of queries for efficient query pro-
cessing triggered by environment and workload changes.

4. RELATED WORK
The DataCell falls in the category of stream-engines for

complex event processing [4, 6, 7, 8, 10, 13, 20], but few
have reached a maturity to live outside the research labs,
e.g., Borealis [1] and TelegraphCQ [7].

Naturally, research on streams shares goals and concepts
with the active databases area. Most noticeable, IBM’s ef-
fort to transform a normal/passive DBMS, Starbust, to an
active DBMS, called Alert [23] comes closer to the DataCell
approach. Active tables and queries share commonalities
with DataCell’s baskets and factories. However, the Data-
Cell model is a much more generic and powerful one by al-
lowing continuous queries to share baskets, take their input
from other queries and so on, creating a network of queries
inside the kernel where a stream of data and intermediate
results flows through the various queries.

In addition, the design of the DataCell allows to exploit
batch processing when the application allows it. Tuple-at-a-
time processing, used in other systems, incurs a significant
overhead while batch processing provides the flexibility for
better query scheduling, and exploitation of the system re-
sources. This point has also been nicely exploited in [19] but
in the context of the DataCell, building on top of a modern
DBMS, it brings much more power as it can be combined
with algorithms and techniques of relational databases.

The functionality of the DataCell was inspired by Stream-
SQL [24] and CQL [5, 2]. These languages have been de-
veloped for simpler queries. Instead, the DataCell has been
developed for complex queries and it supports the complete
SQL-based language.

5. CONCLUSIONS
In this paper, we present the DataCell, a radically dif-

ferent approach in designing a stream engine. The sys-
tem exploits all existing database technology by building
directly on top of a modern DBMS kernel. Incoming tuples

are stored into baskets (tables) and then they are carefully
queried and removed from these tables by multiple factories
(queries/operators) waiting in the system. The design allows
for numerous alternative ways of interaction between the
basic components, that together with the experience gained
from the existing stream literature, can lead to very inter-
esting research opportunities. We have implemented the
first DataCell [18] prototype on top of MonetDB and were
able to achieve out of the box good performance on the
Linear Road benchmark [3]. The major research challenges
for DataCell include window based processing, multi-query
processing and and continuous query plan adaptation, all
of which are areas where the different design of the system
introduces a flow of new research problems to handle.

6. REFERENCES
[1] D. J. Abadi et al. The Design of the Borealis Stream

Processing Engine. In CIDR, 2005.

[2] A. Arasu et al. CQL: A Language for Continuous Queries
over Streams and Relations. In DBPL, 2003.

[3] A. Arasu et al. Linear Road: A Stream Data Management
Benchmark. In VLDB, 2004.

[4] B. Babcock et al. Operator Scheduling in Data Stream
Systems. The VLDB Journal, 13(4):333–353, 2004.

[5] S. Babu and J. Widom. Continuous Queries over Data
Streams. SIGMOD Record, 30(3):109–120, 2001.

[6] H. Balakrishnan et al. Retrospective on Aurora. The
VLDB Journal, 13(4):370–383, 2004.

[7] S. Chandrasekaran et al. TelegraphCQ: Continuous Data-
flow Processing for an Uncertain World. In CIDR, 2003.

[8] J. Chen et al. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. In SIGMOD, 2000.

[9] E. Cohen and M. Straussat. Maintaining time-decaying
stream aggregates. In PODS, pages 223–233, 2003.

[10] C. D. Cranor et al. Gigascope: A Stream Database for
Network Applications. In SIGMOD, 2003.

[11] M. Datar et al. Maintaining stream statistics over sliding
windows. In SIAM Jour. on Computing, pages 635–644,
2002.

[12] T. M. Ghanem et al. Incremental evaluation of
sliding-window queries over data streams. TKDE,
19(1):57–72, 2007.

[13] L. Girod et al. The Case for a Signal-Oriented Data
Stream Management System. In CIDR, 2007.

[14] L. Golab et al. Processing sliding window multi-joins in
continuous queries over data streams. In VLDB, 2003.

[15] M. A. Hammad et al. Scheduling for shared window joins
over data streams. In VLDB, 2003.

[16] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating
window joins over unbounded streams. In ICDE, 2003.

[17] M. Kersten, E. Liarou, and R. Goncalves. A Query
Langua- ge for a Data Refinery Cell. In EDA-PS, 2007.

[18] E. Liarou et al. Exploiting the Power of Relational
Databases for Efficient Stream Processing. In EDBT, 2009.

[19] H. Lim et al. Continuous query processing in data streams
using duality of data and queries. In SIGMOD, 2006.

[20] S. Madden et al. Continuously Adaptive Continuous
Queries over Streams. In SIGMOD, 2002.

[21] MonetDB. http://www.monetdb.com.

[22] J. L. Peterson. Petri nets. ACM Comput. Surv., 9(3), 1977.
[23] U. Schreier et al. Alert: An Architecture for Transforming

a Passive DBMS into an Active DBMS. In VLDB, 1991.
[24] StreamSQL. http://blogs.streamsql.org/.

[25] Y. Zhu and D. Shasha. Statstream: Statistical monitoring
of thousands of data streams in real time. In VLDB, 2002.


